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The Falicov–Kimball (FK) model(1) involves two types of interacting particles:
first the itinerant spinless electrons are quantum particles, secondly the static
ions are classical particles. It is striking to see that, despite the simplicity of its
hamiltonian, the phase diagram of the FK model is highly sophisticated, more-
over it remains in great part conjectural. An antiferromagnetic phase transition
was proven for the FK model on a square lattice in the seminal paper of
T. Kennedy and E. Lieb.(2) This result was extended by Lebowitz and Macris(3)

to ‘‘small magnetic field.’’ Then the same result was obtained by using a new
method.(4) The main results of this paper concerns the two dimensional FK
model on a square lattice, for which we apply the general results contained in
ref. 5. First there exists an effective hamiltonian which is a long range many
body Ising model, and which governs the behaviour of the ions. Secondly we
compute explicitly the truncated effective hamiltonian up to the fourth order
w.r.t. a small parameter (the inverse of the on site energy). Finally we use the
classical Pirogov–Sinai theory, to get the hierarchy of the phase diagrams up to
the fourth order. More precisely, we show that, when the chemical potential
varies, the FK model exhibits, at low temperature, a sequence of phase transi-
tions: first between phases of period two, then of period three, then of period
four, and finally of period five. In each case the completeness of the phase
diagram is proved. This paper supports the conjecture that the phase diagram of
the FK model contains periodic phases outside of a Cantor set.

KEY WORDS: Falicov–Kimball model; itinerant electrons; phase transitions;
Pirogov–Sinai theory; commensurate phases.



1. INTRODUCTION AND RESULTS

The Falicov–Kimball (FK) model, which was introduced thirty years
ago,(1) is a simple quantum lattice model. Despite its apparent simplicity its
phase diagram is probably highly sophisticated. The model involves two
types of interacting particles, first the itinerant spinless electrons are
quantum particles, secondly the ions are classical particles. The FK model
can be seen as a simplified Hubbard model, in which a specie of electrons
does not move, and then become classical particles. Let us define the
hamiltonian of the FK model:

HV=t C
Ox, yP ¥ V

{Ca
xCy+Ca

yCx}+
U
2

C
x ¥ V

s(x) y(x)−
m i

2
C
x ¥ V

s(x)−
me

2
C
x ¥ V

y(x)

(1.1)

• O · , ·P are the nearest neighbor sites.

• t is the hopping.

• U is the on site energy.

• me and mi are the chemical potentials of the electrons and resp. of
the ions.

• Cg
x (resp. Cx) are the fermionic creations (resp. annihilation) opera-

tors obeying to the Fermi statistic.

• yx=2Cg
xCx−1. sa=+1 if there is an ion at the site a and −1

otherwise.

On a bipartite lattice we have two symmetries: the electron to the non elec-
tron transformation Cg

a Q Ca, and the transformation Cx Q −Cx on one
part of the bipartite lattice. We can choose U > 0, because of the symme-
tries of the hamiltonian. It is convenient to use the parameters b for bt,
U for Ut , m i for m

i

t , and me for m
e

t .
In the recent years many papers have been devoted to the FK model.

We first mention the seminal paper of T. Kennedy and E. Lieb,(2) in which
an antiferromagnetic phase transition was proven. This result was extended
by Lebowitz and Macris(3) to small ‘‘magnetic field’’ and then by Messager
and Miracle Sole using a new method.(4) We mention the previous compu-
tations of the effective hamiltonian by Gruber et al. (7, 8) The study of the
ground states with higher periods goes back to Kennedy,(13) next to
Watson,(18) Kennedy,(17) and Haller.(19) More generally, we refer to the
review articles refs. 20 and 21 and to the references therein.
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In this paper we mainly prove the existence, at low temperature, of
three new domains in the plane {U−1×(me−m i)}, in which a sequence of
phase transitions between phases with the same periods occurs: first
between phases of period three, then of period four and finally of period
five. Next we describe how the approach contained in ref. 5, which is
applied to the FK model. We noticed that, for m i=me=0, the classical
part of the hamiltonian has an infinite degeneracy of ground states. The
first main point contained in refs. 4 and 5 is to show that the quantum
fluctuations remove the degeneration of the classical ground states leading
to the coexistence of a finite number of phases. The second main point is
the existence, at every temperature, of an effective hamiltonian, which is a
long range many body Ising hamiltonian, via a convergent cluster
expansion.(5) Notice that the notion of effective hamiltonian is implicit in
ref. 5. Then we can use the deep results of the classical statistical mechanics
such as the classical Pirogov–Sinai (P.S.) theory. Then the effective hamil-
tonian splits into two parts: the ‘‘truncated hamiltonian,’’ which is
computed explicitly up to the fourth order w.r.t. an expansion in U−1, the
remainder acts as a perturbation of the truncated hamiltonian, we notice
that the fourth order effective hamiltonian was first computed in ref. 7.
Then we get a hierarchy of refined phase diagrams for the FK model,
together with the completeness of the phase diagram. The study of the FK
model for other lattices and in higher dimension can be done as well, in
particular the elaborated low temperature hierarchy of phase diagram of
the triangular lattice FK model can be obtained from the results of ref. 9.

1.1. THE THERMODYNAMIC QUANTITIES

To define the partition function, the free energy, the finite volume corre-
lation functions, we need the following definitions.

1.1.1. Definitions

• SV denotes the set of ions’ configurations SV

• Ff is the set of frozen electron’s configurations Ff (non moving).

• The local algebra O is the tensor product of the local algebra built
from the fermionic operators and from the commutative local algebra S
built from the s(x), (9) a typical element is written O ¥ O.

• An element of the set of the boundary conditions SVb in Va is defined
first by an ion’s configuration SVa ¥ SVb , secondly we sum over the (classical)
configurations of frozen electrons FfVa .
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• The set of the finite volume correlation functions restricted to the
subalgebra S with b.c. SVa :

Z{SVa }=C
SV

TrFV é FfVa
e−bHV

F(U, me, m i)=− lim
VQ.

1
b |V|

ln Z{SVa } (0.4)

7D
x ¥X

s(x)8 (SVa )=
;SV

TrFV é FfVa
{e−bH<x ¥X s(x)}

Z{SVa }
( )

The trace is over the Fock space defined in V, meanwhile SVa is fixed.

1.2. THE EFFECTIVE HAMILTONIAN

We have shown in ref. 5 for a wide class of models containing the FK
model, the existence of an effective hamiltonian, which is a generalized
Ising model Hb with long range and many body potentials. Hb is formally
defined by:

Z{H; SVa }=C
SV

[TrFV é FfVa
e−bH]=: C

SV

e−bHb(SV |SVa )

The effective hamiltonian is well defined if the so called S.I. condition, is
satisfied:

|me6 | < Ũ−2n+h.o.

where me6=A−1 .me and Ũ=A−1 .U, where A < 1 is a positive constant,
which will change along this paper.

We recall that Hb satisfies the following property: for any finite
volume V, any set X ¥ V, and any ions’ boundary condition SVa ¥ SVb , the
ionic correlation functions defined from H and the ionic conditional
expectation functions defined w.r.t. Hb fulfill the following identities:

7D
x ¥X

sx8
H

(SVa )=EHb 5D
x ¥X

sx : SVa 6 (1.2)

We define the set of the closed circuits A(Z2) built on the square lattice Z2,
the edges of the circuits, which, in the case of the FK model, are the number
of jumps, can have an arbitrary multiplicity. The effective hamiltonianHb is
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defined via the potentials Yb[SA], which are real valued functions defined
by the restriction of (SV | SVa ) to the circuits A:

Hb(SV | SVa )= C
{A ¥A(Z2)}

Yb[SA]

We define the p order decomposition of the effective hamiltonian:

Hb(V)=Ho
b(V)+· · ·+Hp

b(V)+ C
i=.

i=p+1
H j
b(V)=: H [ p

b (V)+H > p
b (V)

where the p order truncated effective hamiltonian is defined by:

Hp
b(SV | SVa )= C

{A ¥A(Z2) | |A|=p}

Yb[SA]

The p order truncated effective hamiltonian depends explicitly of the tem-
perature, the main problem is that the computations become rapidly
complicated for large p. So it is convenient to define a new decomposition
of Hb, which is relevant at low temperature ONLY: the low temperature
(L.T.) decomposition of Hb, in which the truncated hamiltonians do not
depend of the temperature. To do so, we split each potential in two parts:

Yb[SA]=: Y{b, w}[SA]+Y.[SA]

The corresponding p order hamiltonians are Hp
{w, b} and resp. Hp

.. Next
the L.T. p order decomposition’’ is defined by: Hb.

Hb(V)=Ho
.(V)+· · ·+Hp

.(V)+H{w, b}(V)+H > p
b (V) (1.3)

The crucial point, which is proved in ref. 5 is that, for b large, H{w, b}(V)
and H > p

b act as perturbations of the hamiltonian H [ p
. . This is the route,

that we will follow to establish the hierarchy of the phase diagrams of the
2d. Falicov–Kimball model on a square lattice up to the fourth order.

Next we describe our main results. The first one is the computation of
the fourth order L.T. decomposition of the effective hamiltonian by using
the loop’s formalism described in refs. 4 and 5.

1.3. Proposition: The L.T. Fourth Order Decomposition of the

FK Model

We suppose an S.I. condition is satisfied.

(A) The hamiltonian H admits an effective hamiltonian Hb defined
for every temperature.
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(B) The hamiltonian Hb admits a L.T. fourth order decomposition:

(i) the zero order effective hamiltonian:

Ho
.(V)=

me−m i

2
C
x … V

sx (1.4)

(ii) The second order effective hamiltonian:

H [ 2
. (V)=

me−m i

2
C
x … V

sx+
1

4U
C

{Ox, yP 5 V ]”}
sx .sy (1.5)

(iii) the fourth order effective hamiltonian: (PV is the set of plaquet-
tes included in V)

H [ 4
. (V)=

me−m i

2
C
x … V

sx+5
1

4U
−

9
16U3
6 C

Ox, yP … V×V
sx .sy

+
3

16U3 C
{(x, y) 5 V ]” : |x−y|=`2 }

sx .sy

+
1

8U3 C
{(x, y) 5 V ]” : |x−y|=2}

sx .sy

+
5

16U3 C
{(x, y, z, t) …PV | (x, y, z, t) 5 V ]”}

sx .sy .sz .st (1.6)

(iv) The tail potentials of the hamiltonian H > p
b (V) and of

R{b, w}p [SV | SVa ] decay like:

|Yb[SA]| [ 3 1

Ũ−me6
4 (|A|−1); |R{b, w}p [SV | SVa ]| [ 3

1

Ũ−me6
4p (1.7)

1.4. The Hierarchy of the Phase Diagrams

1.4.1. The Ground States of the Truncated Hamiltonians in the
First Quadrant of {m i−me, 1

U }

In the next figures we represent four ion’s configurations. An ion is
represented by a fat point, and the absence of an ion is represented by a
point. The pure ion’s configuration So is not depicted.
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1
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1
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1
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1
5

The origin is the lower left corner. Now the set of ground states is
composed of five families Ŝ[r, q] of ions’ configurations, which are obtained
by the composed actions of the shift T of the unit vector (1, 0), and of the
rotation R(a) of angle a. The additional subscript is the order of the
ground state. Notice that a ground state appearing at a given order, is a
ground state for all the higher orders.

q=o. The family is reduced to the ion’s configuration Ŝ[o, o] — Ŝ[1, o] —

Ŝ[3, o]=So.

q=1
2 . By mean of the action of T on S

1
2, we get: Ŝ[2, 12] — {S

1
2, ST(12)}

q=1
3 . By mean of the composed actions of T and of R=R[P2] on S

1
3,

we get: Ŝ[4, 13]={S
1
3, ST(13), ST2(13), SR p T(13), SR p T(13), SR p T2(13)}

q=1
4 . By mean of the composed actions of T and of R=R[P2] on S

1
4,

we get: Ŝ[4, 14]={S
1
4, ST[14], ST2[14], ST3[14]; SR p T(14), SR p T2(14), SR p T2(14),

SR p T3(14)}

q=1
5 . By mean of the composed action of T and of RŒ=R[P3] on

S[4, 15], we get: Ŝ[4, 15]={S
1
5, ST(15), ST2(15), ST3(15), ST4(15); S[RŒ p (15), SRŒ p T(15),

SRŒ p T2(15), SRŒ p T3(15), SRŒ p T4(15)}

1.4.2. The Low Temperature Phase Diagrams of the
Truncated Hamiltonians

(i) The phase diagram of Ho
. (Fig. 1). There is only one open

domain D[0, 0] contained in the first quadrant Q. Along the line L[0, 1]

defined by me=m i, every configuration is a ground state. There is only one
low temperature phase, which is a small distortion of Ŝ[0, 0].

(ii) The phase diagram of H [ 2
. (Fig. 2). The two open disjoint

domains D[2, 0], and D[2, 12] belongs to Q are separated by the line L[2, 1]

defined by: |me−m i|=2
U (Fig. 2). H

[ 2
. has an infinity of ground states along

L[2, 1]. The phases coexisting at low temperature in each one of the two
domains are small distortions of the ground states Ŝ[2, 0], and resp. Ŝ[2, 12].
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(iii) The phase diagram of H [ 4
. (Fig. 3). The five open disjoint

domains D[4, 0], D[4, 12], D[4, 13], D[4, 14], D[4, 15] included in Q are separated by
four curves L[4, 1], L[4, 2], L[4, 3], L[4, 4] defined in ref. 18 (Fig. 3). Along these
curves H [ 4

. has an infinity of ground states. The phases coexisting at low
temperature in each one of the five domains are small distortions of the
ground states contained in the corresponding families Ŝ[4, 0], Ŝ[4, 12], Ŝ[4, 13],
Ŝ[4, 14], Ŝ[4, 15].

Now we construct the hierarchy of the phase diagram of the FK model up
to the fourth order. We recall that the ‘‘l shrinked domain’’ of B is defined
by B(l)=: {x ¥ B … Rn | d(x, B̄) < l}

• The zero order phase diagram of Hb and then of H is the phase
diagram of Ho

. restricted to a shrinked domain. There is a ‘‘forbidden

Fig. 1. Two phase diagrams: first the phase diagram of Ho
. is obtained by removing the

shaded area to get the domain Do
o in which Ho

. has a unique phase; secondly by looking at
the full figure, we get the domain D2 oo …Do

o, in which the phase diagram of Ho
. and then of H

coincide. In the shaded area the phase diagram of H remains unknown at the zero order.
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Fig. 2. Two phase diagrams: first the phase diagram of H [ 2
. is obtained by removing the

shaded area, the quadrant is shared by the line L[2, 1] into two domains D2
1
2
, and D2

o, in which
the stable phases have electron’s density close to 1

2 , and 0; secondly by looking at the full
figure, we get two shrinked domains 6D2

1
2
…D2

1
2
, 6D2

o …D2
o in which the phase diagrams of H [ 2

.

and then of H coincide. In the shaded areas the phase diagram of H remains unknown at the
second order.

corridor’’ inherited from the tail potential, in which the phase diagram
of Hb remains unknown (Fig. 1). We refine the phase diagram of Hb by
considering H [ 2

. .

• The second order phase diagram of Hb and then of H is the phase
diagram of H [ 2

. in shrinked domains. We refine the phase diagram of Hb
by considering H [ 4

. .

• The fourth order phase diagram of Hb and then of H is the phase
diagram of H [ 4

. in shrinked domains. Again appear ‘‘forbidden corridors’’
in which the phase diagram ofHb and then ofH remains unknown (Fig. 4).
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Fig. 3. Two phase diagrams: first the phase diagram of H [ 4
. is obtained by removing the

shaded area, the quadrant is shared by the curves L[4, 1], L[4, 2], L[4, 3], L[4, 4] defined in ref. 18
into five domains D4

1
2
, D4

1
3
, D4

1
4
, D4

1
5
, D4

o, in which the stable phases of H [ 4
. have electron’s

density close to 1
2 ,
1
3 ,
1
4 ,
1
5 , and 0; secondly by looking at the full figure, we get five shrinked

domains 6D4
1
2
…D4

1
2
, 6D4

1
3
…D4

1
3
, 6D4

1
4
…D4

1
4
, 6D4

1
5
…D4

1
5
, and D2 40 …D4

0, in which the phase diagrams
of H [ 4

. and then of H coincide. In the shaded areas the phase diagram of H remains
unknown at the fourth order.

More generally we expect that the ‘‘forbidden corridors,’’ appearing at a
given order, are partly filled at the next order with higher periods phases
separated by new ‘‘forbidden corridors,’’ etc.

1.5. Theorem: The Hierarchy of the Phase Diagrams of the

FK Model

The hamiltonian H satisfies an S.I. condition. Then there exists a set
of strictly positive functions A[r, s] of (me−m i), such that the following
properties hold.
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Fig. 4. Represents the differents loops involved in the computations of the potentials of the
effective truncated hamiltonians of the FK model on the square lattice up to the fourth order.

(A) Phase transitions. Ergodic decomposition w.r.t. the ion’s
variables.

• Zero order. b > A[o, o]

In the domain D[o, o]( 1
U−|me|), there is uniqueness in the set of the perio-

dic correlation functions.

• First order. b > A[2, p]×U.
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(i) p=o. In the domain D[2, o]( 1
[U−|me|]3) there is uniqueness of the

periodic correlation functions.
(ii) p=1

2 . In the domain D[2, 12]( 1
[U−|me|]3), there are two and only two

extremal periodic correlation functions (pure phases).

• Third order. b > A[4, q]×U3.

(i) q=1
2 . In the domain D[4, 12]( 1

[U−|me|]5), there are two and only two
extremal periodic correlation functions.

(ii) q=1
3 . In the domain D[4, 13]( 1

[U−|me|]5), there are six and only six
extremal periodic correlation functions.

(iii) q=1
4 . In the domain D[4, 14]( 1

[U−|me|]5), there are eight and only
eight extremal periodic correlation functions.

(iv) q=1
5 . In the domain D[4, 15]( 1

[U−|me|]5), there are ten and only ten
extremal correlation functions.

(v) q=o. In the domain D[4, o]( 1
[U−me]5), there is uniqueness of the

periodic correlation functions.

Note.

• These results are extendable to the whole plane by using the symme-
tries of the hamiltonian.

• This hierarchical construction of the phase diagram suggests the
existence of a devil’s staircase phase diagram.

• We can expect also coexistence of phases of different periods.(18–20)

Content of the Paper. Chapter 2 contains:

• the computation of the effective hamiltonian up to the fourth order,
• the contour representation,
• the polymer expansion, and the cluster expansion,
• the Pirogov–Sinai theory which leads to the construction of the

fourth order phase diagram of the FK model.

Chapter 3 is devoted to the completeness of the phase diagram.

2. THE PHASE DIAGRAM OF THE FALICOV–KIMBALL MODEL

The first step is to construct the L.T. fourth order decomposition of
the FK hamiltonian. We compute explicitly the truncated effective hamil-
tonians up to the fourth order at b=. by using the loop’s representation
contained in ref. 5. Notice that the computations are simpler if we use the
formulas contained in refs. 7, 17, 18, and 19.
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2.1. The Effective Hamiltonian

Each loop l is endowed with a sign e(l)={−1}p(l). p(l) is the parity
of the permutation between the incoming electrons and the outcoming
electrons to the loop l. fq.(SA) denotes the potential defined on the ion’s
configurations SV restricted to the volume A … V, at the order q, computed
for b=..

2.1.1. The Zeroth Order Effective Potentials

fo.(•)=h, fo.(−)=−h

2.1.2. The Second Order Effective Potentials

f2.(•, •)=0, f2.(−, −)=0;

f2.(•, −)=f2.(−, •)=−F
.

0
e−2sU ds=−

1
2U

In the first case a continuous non winding loop cannot be created. In the
second case we sum over the s.d. of the non winding continuous loops of
L2 (two jumps’ non winding loop) created at a fixed time on a given bond,
so that we have to integrate over the time between the two jumps.

2.1.3. The Fourth Order Effective Potentials

(a) The plaquette’s potential with one electron or three electrons:

j4. R
• •
• −
S=j4. R

• •
− •
S=j4. R

− •
• •
S=j4. R

• −
• •
S

=j4. R
− −
− •
S=j4. R

− −
• −
S=j4. R

• −
− −
S

=j4. R
− •
− −
S=−F

.

0
e−2s1U ds1 F

s1

0
ds2 F

s2

0
ds3=−

2
8U3

We have to integrate the signed densities built from the loops of L4
depicted in Fig. 4a. We integrate over the three times of occurrence of the
successive jumps (the first jump is fixed). The parity of the permutation of
the electrons is even so that the sign of the signed density is positive. The
factor two arises from the fact that the electron can move at first in two
directions.

On Quantum Phase Transition. II. The Falicov–Kimball Model 797



(b) The plaquette’s potential with two adjacent electrons:

f4. R
• •
− −
S=f4. R

− −
• •
S=f4. R

• −
• −
S=f4. R

− •
− •
S

=(−)×(−) F
.

0
e−2s1U ds1 F

b

0
e−2s2U ds2 F

s2

0
e−2s3U ds3=

4
8U3

Again we integrate the signed densities built from the loops of L4 (four
jumps’ non winding loop) depicted in Fig. 4b. As the two electrons are
permuted, the sign of the s.d. is negative. The factor four arises from the
fact that the electrons have four different possibilities to move along the
loop (two at first and then two after the first jump).

(c) The plaquette’s potential with two opposite electrons:

f4. R
• −
− •
S=f4. R

− •
• −
S

=(−)2 2 F
.

0
e−2s1U ds1 F

s1

0
e−2s2U ds2 F

s2

0
e+2s3U ds3=

4
8U3

We integrate the signed densities built from the loops of L4 depicted in
Fig. 4c over the times in between two consecutive jumps As the two elec-
trons are permuted the sign of the signed density is negative. The origin of
the entropical factor is that each one of the two electrons move in two
directions.

The plaquette’s potential with four electrons or with four ions:

f4. R
• •
• •
S=f4. R

− −
− −
S=0

(d) The next nearest neighbor potential with two adjacent ions:

f4. R
•

− •
S=f4. R

−
• •
S=f4. R

+
• +
S=f4. R

•
+ +
S

=f4.(•, •, −)=f4.(−, •, •)=f4.(•, −, −)=f4.(−, −, •)

=−F
.

0
e−2s1U ds1 F

s1

0
ds2 F

s2

0
ds3=−

1
8U3

We integrate the signed densities built from the loops of L4 depicted in
Fig. 4d over the times in between two consecutive jumps. In both cases the
sign is positive.
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(e) The nearest neighbor potential with two non adjacent ions:

f4. R
•

• −
S=f4. R

−
− •
S=f4.(•, −, •)=f4.(•, −, •)

’ −f4.({•, −}, {•, −})

=(−)×(−) F
.

0
e−2s1U ds1 F

s1

0
ds2 F

s2

0
ds3=

2
8U3

These terms corresponds to the second order term of the cluster expansion,
namely to the cluster, which is built from two intersecting loops of L2 (see
Fig. 4e). Let us recall that this term has a negative sign in the cluster
expansion.

(f) The two body nearest neighbor potential at the fourth order:

f4.(•, −)=f4.(−, •)=: (−)×(−) f4.({•, −}, {•, −})=
1

8U3

We have computed the second order term occurring in the cluster expan-
sion, where the clusters are composed of two intersecting loops of L2,
which are located above the same bond (see Fig. 4f), this s.d. appears with
a negative sign in the cluster expansion.

It is straightforward to rewrite the truncated hamiltonians in term of
the sx r.v. to get the parts (i), (ii), and (iii) of Proposition 1.2. The part (iv)
is proven in ref. 5 for a general class of models.

2.2. Phase Diagram of the Truncated Hamiltonians

In the next proposition, we describe the landscape of the ground states
of the type [r, q] in the first quadrant for the truncated effective hamilto-
nians Ho

., H
[ 2
. , and H [ 4

. established in ref. 17.

2.2.1. Proposition.(18)

(i) The ground state of Ho
. are, either the ion configuration S[0, 0]

in the domain D[0, 0], or infinitely many on the line L[o, 1].

(ii) The ground states of H [ 2
. are either the ion configuration S[2, 0]

in the domain D[2, 0], or the two Neel configurations of Ŝ[2, 12] in the domain
D[2, 12], or infinitely many on the line L[1, 1].

(iii) The ground states of H [ 4
. are either the five families of config-

urations Ŝ[4, q] (defined in the introduction) in the domains D[4, q] (q ¥

{12 ,
1
3 ,
1
4 ,
1
5 , 0}), or infinitely many on each curve L[4, 1], L[4, 2], L[4, 3], L[4, 4].

On Quantum Phase Transition. II. The Falicov–Kimball Model 799



Proof. The zero order ground state is the pure ion configuration.
The second orders are the two chessboard configurations of the Ising anti-
ferromagnet. The fourth orders are defined on lattice blocks of size 3×3.
Then a block is a ground state block of the class [4, q] if it fits with the
ground states defined by S[4, q] in the introduction. A part of the proposi-
tion was obtained in the papers of Gruber et al.(7, 8) L

Notes. The ground states are indexed by their order despite they can
be the same, because the local ground states are constructed from blocks of
different sizes, at each order. For example the Neel local ground states are
built from connected bonds at the second order, meanwhile they are built
from 3×3 connected blocks at the fourth order. The inner boundaries and
of the outer boundary of a contour are specified when it is needed. Next we
define the contours of the type [r, q].

2.2.2. The Contours of the Type [0, 0]

• In the domain D[0, 0], The contours of the type [0, 0] are the the
maximal connected sets of bonds which contain at most one ion per site.

2.2.3. The Contours of the Type [2, 0] and [2, 12]

• In the domain D[2, 0] the contours of the type [2, 0] are the the
maximal connected sets of bonds with at most one ion per site.

• In the domain D[2, 12], the contours of the type [2, 12] are the anti-
ferromagnetic contours, which are the connected dual lines to the bonds
containing either two ions or no ion.

2.2.4. The Contours of the Type [4, 12], [4,
1
3], [4,

1
4], [4,

1
5], [4, 0]

The families of the third order contours are the corresponding
maximal connected set of 3×3 bad blocks, defined successively in the
domains D[4, 0], D[4, 12], D[4, 13], D[4, 14], and D[4, 15].

2.2.5. The Contour Representation of the Partition Functions and the
Correlation Functions of the Type [r, q]

• The boundary conditions in Va are represented, in each domain
D[r, q], by two families of contours of the type [r, q]: a family of closed
contours C̄[r, q]={c̄[r, q]1 · · · c̄[r, q]n } and, in general, a family of open contours
D̄ [r, q]={d̄[r, q]1 · · · d̄[r, q]m }. We will denote by ”[r, q] the boundary conditions
defined by the ground states of the type [r, q].

• A configuration is given by two families of compatible contours of
the type [r, q], together with their inner and outer configurations: a family
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of closed contours C[r, q]={c[r, q]1 · · · c[r, q]i } in V, and a family of open con-
tours in V: D[r, q]={d[r, q]1 · · ·d[r, q]j } compatible with D̄ [r, q].

Now we define the rescaled conditional partition functions, the rescaled
partition functions, and the contour correlation functions of the type [r, q]
with the b.c. C̄[r, q] and D̄ [r, q] in Va .

X(C[r, q], D[r, q] | C̄[r, q], D̄ [r, q])

=
ZCOND(C[r, q], D[r, q] | C̄[r, q], D̄[r, q])

ZCOND(”[r, q] |”[r, q])
V

X[C̄[r, q], D̄ [r, q]]

= C
g

{C[r, q], D[r, q]}

X(C[r, q], D[r, q] | C̄[r, q], D̄ [r, q])

r({c[r, q]1 ,..., c[r, q]k } | C̄[r, q], D̄ [r, q])

= C
g

{C[r, q], D[r, q]} | {c[r, q]1 ,..., c[r, q]k } … C[r, q]}

X(C[r, q], D[r, q] | C̄[r, q], D̄ [r, q])

The sum f is the sum over the set of contours which are compatible with
the boundary conditions {C̄[r, q], D̄ [r, q]}.

2.2.6. Proposition: Peierls Estimates for the Truncated
Hamiltonians

If an S.I. condition holds, there exists a family of functions C[r, q] of
me−m i, which go to zero when me−m i attains the boundary curves L[r, q] of
the domains D[r, q].

(i) The zero order. The contour’s energy per bond is larger than
C[o, o] in D[o, o].

(ii) The second order. In the domain D[2, o] the energy per unit bond
of a contour is larger than C[2, o]. In D[2, 12], the contour’s energy per unit
length of a contour is larger than C[2,

1
2]× 1

U .
(iii) The fourth order. In the domains D[4, q], where q belongs to

[0, 12 ,
1
3 ,
1
4 ,
1
5]), the contour’s energy per 3×3 block is larger than C[4, q]× 1

U3 .

Proof. The zero order estimate is trivial. The first order estimate is
the usual contour’s energy per unit length of a contour of the antiferro-
magnetic Ising model with a magnetic field. Next we go to the fourth order.
We deduce, from the Proposition 2.1.3, that every 3×3 block of a contour
has an energy larger than C[4, q]× 1

U3 . As we know, the proof of the Peierls
condition is not automatic in this case, it is a consequence of ref. 17. L
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2.3. The Contours’ Cluster Expansions of the FK Model

We first convert the interacting contours into non interacting
decorated contours.

2.3.1. The Decorated Contour Representation of the FK Model

The treatment of the different classes of contours of the type [r, q] are
analogous. We will treat only the third order, which is the most elaborated.
We consider the case of the closed b.c. (the extension to arbitrary b.c. is
easy). Following ref. 22, we introduce a cutoff C[b, U−me], which shares
the potentials into the ‘‘low energy’’ potentials and into the ‘‘high energy’’
potentials. C={c1,..., cp} is a configuration of closed contours contained
in V, we skip the reference to the type and to the class.

2.3.2. Definitions

We decompose the set of loops into two sets:

A{ \ C[b, U−me]}=: {A ¥A | |A| \ C[b, U−me]}

A{ < C[b, U−me]}=: {A ¥A | |A| < C[b, U−me]}

• A family U={v1,..., vq} of T. contours is built from the contours
contained in C. We first define the thick contours, which are built by
surrounding each contour cj … C with a corridor of ‘‘width’’ C[b, U−m

e]
2 which

contain the supports of the potential belonging to A{ < C[b, U−me]}, secondly
the subsets of the contours of C, which relative distance is smaller than
C[b, U−me]

2 , are glued together to build a T. contour vi.

• P(U) is the set of disjoint maximal partitions of the set of T. con-
tours U. An element of P(U) is written as {Ua1 ,..., Uar}.

The energy of a family of T. contours U is splitted into two parts:

H< C[b, U−me](v1,..., vp |”)

=C
j=q

j=1
H [ 4(vj)+C

j=q

j=1
C

{A ¥A< C[b, U−me] | A 5 vj ]”; |A| > 4}
YA[vj]

H\ C[b, U−me](v1,..., vp |”)

=C
j=q

j=1
C

{A ¥A\ C[b, U−me] | A 5 vj ]”}
YA[(v1,..., vq)

• A T. contour functional is a functional of a T. contour vj defined by:

w(vj)=e−bH{ < C[b, U−me]}(vj)
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• An interaction functional is a functional of a family of T. contours
{vr1 ,..., vri ) and of a set A which intersect the T. contours {vr1 ,..., vri}:

gA(vr1 ,..., vri )=ebYA(vr1 ,..., vri )−1; A ¥A{ \ C[b, U−me]}

• A decorated contour U[r, p]=: [{v1,..., vr}; {A1,..., Ap}] is a maximal
connected set. By connected, we mean that the supports of the T. contours
{v1,..., vr} and the supports of the sets {A1,..., Ap} ¥AV are maximally
connected.

Next we perform a new polymer expansion of the rescaled conditional par-
tition functions by expanding the contour functionals and the interaction
functionals defined above.

X[{v1,..., vp} |”}]

= C
{Ua1 ,..., Uar } …P(U)

3 C
k=r

k=1

5 C
{Ak1 ,..., Akp } … P(AV)

K{Ak1 ,..., Akp }{Uak}64

with

K(U[k, p])=: K{Ak1 ,..., Akp }(Uak )=D
i ¥ ak

w[vi] D
p

l=1
gAkl

[Uak]

Notes.

• The b.c. are now defined by a configuration of decorated contours
Ū[r, q] and W̄[r, q] which supports are in Va . We define the rescaled partition
function X(Ū[r, q]W̄[r, q]) from the family of the rescaled conditional parti-
tion functions X(U[r, q], W[r, q] | Ū[r, q]W̄[r, q]).

• The main advantage of the polymer expansion written in term of
decorated contours is that the decorated contours do not interact. Now we
can perform a convergent C.E. of each rescaled partition function in term
of its decorated contours.

2.3.3. Proposition: The Contours’ Cluster Expansion

The hamiltonian H fullfill an S.I. condition. C̃[q, r] are the families of
the functions of me−m i defined as in Proposition 2.2.4.

Then every partition function can be expanded into a family of con-
vergent C.E. Each C.E. is performed for a family of contours, in the corre-
sponding shrinked domains:
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(i) D[o, o]( 1
[r(U)− |r(me)|]), if b > C̃[0, 0].

(ii) (a) D[2, 0]( 1U3), if b > C̃[2, 0]×U; (b) D[2, 12]( 1U3), if b > C̃[2,
1
2]×U.

(iii) (a) D[4, 12]( 1
[r(U)− |r(me)|]5

), if b > C̃[4,
1
2]×U3, (b) D[4,

1
3]( 1
[r(U)− |r(me)|]5

),

if b > C̃[4,
1
3]×U3, (c) D[4,

1
4]( 1
[r(U)− |r(me)|]5

), if b > C̃[4,
1
4]×U3, (d)

D[4,
1
5]( 1
[r(U)− |r(me)|]5

), if b > C̃[4,
1
5]×U3, (e) D[4, 0]( 1

[r(U)− |r(me)|]5
), if b >

C̃[4, 0]×U3.

Proof. We refer to the Appendix of ref. 16 for a simple proof for the
existence of a convergent C.E. L

2.4. Phase Transitions of the FK Model

We have shown in ref. 5 that the the classical PS theory(13) can be
applied to the FK model if an S.I. condition is satisfied. Now we have to
construct the phase diagram of the type [r, q] of the FK model. The P.S.
decompositions of Hb are obtained by varying the chemical potential. This
construction is rather simple, because the ground states and the contours of
a fixed type [r, q] are obtained one from another by a geometric trans-
formation. We will use the decorated contours of the type [r, q], in
place of the contours of the type [r, q] of the corresponding truncated
hamiltonians.

We choose to treat the case of the decorated contours of the type
[4, 13]. The other cases are similar or even simpler. In the domain D[4, 13]( 1

U5
)

the hamiltonian H [ 4
. has six different ground states labeled by p ¥

{1, 2, 3, 4, 5, 6}. They are related one to another by the action of one the
following six geometric transformations: Rb[p2] p Sa with a ¥ {0, 1, 2}, and
b ¥ {0, 1}, which were defined in the introduction. As usually in the PS
theory, we introduce contour models, which are six in our case. Each one is
defined from a partition function, which b.c. is one of the six configura-
tions contained in Ŝ[4, 13]. We use for these b.c. the notations ”[4, 13]

p , where
p ¥ {1, 2, 3, 4, 5, 6}, which means the absence of contour in Va . We will skip
the reference to the type. We start from the b.c. ”po . Let {v̂1,..., v̂r} be the
subset of the exterior contours of a given decorated contour configuration
{v̂1,..., v̂r, v̂r+1,..., v̂n}. Each exterior contour generally contains several
interiors. Each interior has itself an outer boundary, which configuration is
one of the six ground states, say ”po. The six contour models are defined
inductively through the six partition functions. Eachone is defined from the
b.c. corresponding to one of the six ground states:

XV(”p)=D
i=r

i=1
K(v̂i)

X(Int(v̂i) |”pi)
X(Int(v̂i) |”po)

X(Int(v̂i) |”po)
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where K(v̂i) is the weight of the exterior decorated contour v̂i. We define
the new contour functionals for the decorated contour v̂i:

F(v̂i)=K(v̂i)
X(Int(v̂i) |”pi)
X(Int(v̂i) |”po)

We obtain the six inductive presentations of the partition functions labeled
by p ¥ {1, 2, 3, 4, 5, 6}.

XV(”p)= C
Ûp={v̂1,..., v̂s}

D
i=s

i=1
F(v̂i)

2.4.1. Proposition

The hamiltonian H satisfies an S.I. condition.

(i) There exists a positive function C̃[2,
1
2] of me−m i, such that for

b > C̃[2,
1
2]×U, the two Neel phases are stable in the domain D[2, 12]( 1

[U−|me|]3
),

(ii) There exists a set of positive functions C̃[4, q] of me−m i, such that,
for each q ¥ {12 ,

1
3 ,
1
4 ,
1
5}, the phases of family of the type [4, q] are stable in

the domains D[4, q]( 1
[U−|me|]5

) for the corresponding values of b > C̃[4, q]×U3.

Proof. As the proofs are similar for the contours of type [r, q], we
prove the stability for the phases for the type [4, 13] in the domain
D[4, 13]( 1

[Ũ− |r(6me)|]5
), which means that there exists a positive number yg

1
3
such

that, for large b, we have, for every couple of integers {s ] t}, each one
belonging to {1,..., 6}:

X(Int(v̂i) |” s)
X(Int(v̂i) |” t)

[ ey
g
1
3
“(Int v̂i)

This follows from the following fact: for any pair of partition functions
defined in a finite volume V, the first one with b.c.” s, the second one with
b.c. ” t (s ] t), there exists a couple of integers [a, b], where a ¥ {0, 1, 2},
and b ¥ {0, 1}, such that:

X(V |” s)=X(Sa p Rbp
2
[V] |” t)

In other words, the decorated contours contained in V with the b.c. ” s,
and the decorated contours contained in V, with the b.c. ” t are related by
the transformation Sa p Rb{p2} defined above. Two decorated contours
appear in the two partition functions, if the transformed contours by
Sa p Rb{p2} do not intersect “V. In other words, the difference between the
two partition functions relies in the sum of the truncated functions defined
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on the clusters which, after the transformation Sa p Rb[p2], intersect “V.
This sum is estimated by using the convergent C.E. of the Proposi-
tion 2.3.3. We first estimate the sum yg

1
3

of the truncated functions
computed for the clusters which intersect one point. Then we obtain:

yg
1
3
=exp 5−D[3, 13]b

1

[Ũ− |me6 |]3
+h.o.6

where D[3, 13] is a positive constant. This proves the stability of the phases.
The proof of the existence of the phase transitions of the type [r, q]

contained in the theorem is a consequence of the stability of the phases,
shown in Proposition 2.4.2, see ref. 12. L

Note. As noticed above, we have used a simple version of the P.S.
theory. We expect that the general P.S. theory will be needed in the case of
phase transitions between phases with different periods to extend the
results obtained for the ground states.(13, 18, 19)

3. ERGODIC DECOMPOSITION OF THE TYPE [r, q]

Next we establish the ergodic decomposition of the periodic correla-
tion functions restricted to the algebra S, we benefit of the standard
methods of the classical statistical mechanics, which are applied to the
effective hamiltonian Hb. The ergodic decomposition of the periodic Gibbs
states was first obtained in ref. 14 for the Ising model, and was extended to
the framework of the PS theory in ref. 15. The case considered here of the
FK model is simple because all the phases are stable in each domains under
consideration. The ergodic decomposition will hold if the hypothesis con-
tained in ref. 15 are satisfied. We first need an S.I. condition, and secondly
that b belongs to the ranges of the phase coexistence, defined in Proposi-
tion 2.4.2, according to the domain D[r, q]( 1

[Ũ− |6me|]r+1
) that we consider. We

give the main points of the proof, referring to ref. 14 and to ref. 15 for
more details.

We start from a finite volume V=L2. We use the decorated contours.
A b.c. in Va is generally represented by two families of decorated contours:

• a family of closed contours Ū[r, q],

• a family of open contours W̄[r, q].

Then a given contours’ configuration in V, compatible with the b.c. is
generally defined by two families of contours:
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• a family of open decorated contours Ŵ[r, q]={ŵ[r, q]1 ,..., ŵ[r, q]m }
compatible with W̄[r, q],

• a family of closed decorated contour Û[r, q]={v̂[r, q]1 ,..., v̂[r, q]n }.

Then the corresponding partition function is written as:

XV(Ū[r, q]; W̄[r, q])= C
{Û[r, q]; Ŵ[r, q] — W̄[r, q]}

D
i=n

i=1
D
j=m

j=1
F(v̂[r, q]i ) F(ŵ[r, q]j )

The open contours contained in V share the volume V into disconnected
sub volumes {Vp11 ,..., Vpn+1n+1 }, each one has an outer boundary configuration
pj, which is one of the ground states of type [r, q].

XV(Ū[r, q]; W̄[r, q])= C
{Û[r, q]; Ŵ[r, q]W̄[r, q]}

D
i=m

i=1
K(ŵ[r, q]i ) D

j=n

j=1
XVi (”

[r, q]
pj )

Now we define the periodic states as the infinite volume limit of the
following average defined with respect to the period x*:

OsXP
per.
V =

1
L2

C
x* ¥ V

OsX+x*P(Ū[r, q]; W̄[r, q])

Now we are left with a family of partition functions with b.c. corresponding
to one ground state, say mi, then we use the inductive contour representation
given in the previous section for the partition functions with closed boundary
conditions. Next we have to prove that, for all choice of boundary condi-
tions, the following estimate is proven as in refs. 17 and 18:

Prob 5 C
i=m

i=1
|ŵ[r, q]i | > L1+d6 < e(L)

where d is a positive number smaller than 13 , e(L) is a positive number going
to zero when L Q.. To estimate the probability of the open contours, we
use from one side the Peierls condition for the contours of the type [r, q],
and from the other side the stability condition to deduce the inequality:

X(Vi |”
[r, q]
mi )

X(Vi |”
[r, q]
p )

[ ey
g
r, q “(Vi)

These two estimates are both true in the corresponding ranges of b, which
are defined in Proposition 2.3.2, for each domain D[r, q]( 1

[Ũ− |6me|]r+1
). The

meaning of this estimate on the probability of the open contours is that the
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open contours occupy a small part of V, so we define the set of the ‘‘corri-
dors’’ of width Ld transverse to each open contours ŵ[r, q]i . Then these
corridors have a total volume L1+d, with probability close to one, for large
L. The complements of these corridors define a new set of shrinked
volumes {Vp11 (Ld),..., Vpn+1n+1 (L

d)}, some of which can be empty. The perio-
dic correlations functions are obtained by a volume average over the corre-
lation functions. The total contribution of the correlation functions, which
supports are located in these corridors, goes to zero in the infinite volume
limit. The remainder are the contributions of the correlation functions,
which support are in the volumes {Vp11 (Ld),..., Vpn+1n+1 (L

d)}, far from the
boundary. The correlation functions with support in each volume Vpi1 (Ld)
are the pure phases corresponding to the boundary mi. (19) This means that,
for every boundary condition defined by Ū[r, q], and by W̄[r, q], we produce
the explicit ergodic decomposition of the periodic correlation functions, in
the corresponding ranges of b, which were defined in Proposition 2.3.3, by
computing the sum of volume Vpi1 (Ld) with the same boundary condition
mi. At the zero order, there is only one extremal point in D[o, o]( 1

Ũ− |me|
). At

the second order there is only one extremal point in D[2, o]( 1
[U−|me|]3

), and
only two extremal points in D[2, 12]( 1

[U−|me|]3
). At the fourth order there is only

one extremal point in D[4, o]( 1
[U−|me|]5

), only two in D[4, 12]( 1

[Ũ− |6me|]5
), six in

D[4, 13]( 1
[U−|mo|]5

), eight in D[4, 14]( 1
[U−|me|]5

), and ten in D[4, 15]( 1
[U−|me|]5

). This
concludes the proof of the ergodic decomposition stated in Theorem 1.4.

Remark. From our families of convergent C.E. performed for the
families of contour models, we can derived analyticity properties of the
correlation functions which are expressed in term of the contours.

4. CONCLUSIONS

The existence of a cascade of new phase transitions, with higher
periods is proved for the FK model. It is natural to dunk that, at least in
part, the phase diagram is composed of periodic phases outside of a Cantor
set. Watson, Kennedy and Haller have shown for the canonical ensemble
the coexistenco of ground states of different periods(13, 18, 19) one should be
able to extend this result at low temperature by using the equivalence of
ensembles available in the classical statistical mechanics, together with the
full P.S. theory. For me=m i=U and large values of t

U , T. Kennedy and
E. Lieb were able to prove the existence of a first order phase transition.
This result should be partly extendable to other values of the chemical
potentials, despite we do not expect that the phases of higher periods
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should coexist. We point out the recent paper of Freericks, Lieb and
Ueltschi,(23) who prove the segregation outside of the ‘‘half filled band.’’
The problem of flux phases pointed out for the high Tc was partially solved,
in the half filled band, for a wide class of models by E. Lieb in ref. 16. For
the FK model coupled to a magnetic field, rational flux appear in some
ground states only for small values of m i−me, this was shown to be true for
the ground states in ref. 9. Our approach is used to study the problem of
the quantum interfaces in dimension three, in which the same structure
appears. The quantum fluctuations select one dominant quantum interface.
The 100 interface of the FK model (orthogonal to the vector 100) is rigid at
low temperature due to the second order quantum fluctuations. The 111
interface is infinitely degenerate for the second order effective hamiltonian.
The fourth order quantum fluctuations together with the Fermi statistic are
responsible of the rigidity of the 111 interface at low temperature.(6)
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